If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18z^2+60z-50=0
a = 18; b = 60; c = -50;
Δ = b2-4ac
Δ = 602-4·18·(-50)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60\sqrt{2}}{2*18}=\frac{-60-60\sqrt{2}}{36} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60\sqrt{2}}{2*18}=\frac{-60+60\sqrt{2}}{36} $
| X^2+3x+3=4x+9 | | 2v+3=3v+6 | | 4(2x-3)+5x=-(7x+11)+19 | | 180(n-2)=160n | | 3x-5+8x-15+2x+4+3x-5=360 | | x^2+(20/3)=0 | | -40=-6p | | 3x-5+8x-15+2x+4=360 | | -11x+10/10=-x-5 | | 4y-13=27y= | | 3x-5+8x-15+2x+4+X=360 | | 2x-4/5-3(x-2)/2=-3x+2(x+1)-7 | | 7q=10+2q | | 5x-4=-3x+52 | | 9,17x=0 | | 1/2(x+2)=7/5 | | 20x^2+20x-75=0 | | 25890=3x | | 2x+1=2x+-1 | | 9x+8x+17=68 | | 15=1.9x | | 15=-7.4x | | 4b-3.75=30 | | -3u/5=21 | | 4b−3.75=30 | | -x^2+4x=21 | | 7y-40=28+3y | | 2(k+9)=22 | | 4(y+4)+6(y-11)=180 | | 5-x+5x=626/25 | | -2x+1=7x | | 12(x-5)+4(x+4)=180 |